

Linus Scheibenreif, Michael Mommert, Damian Borth

AIML Lab, School of Computer Science, firstname.lastname@unisg.ch

Motivation

- Unlabeled observations are abundant in the remote sensing domain
- Labeling this data is difficult, slow and expensive
- Realistically, it is not possible to label all data that satellites acquire
- This makes **self-supervised learning** a promising approach to leverage vast amounts of unlabeled data in the remote sensing domain

Universität St.Gallen

• We adapt the SimCLR [1] contrastive self-supervised learning approach to co-located Sentinel-1 and Sentinel-2 imagery

ldea

- Instead of randomly augmenting data samples, our technique treats the different imaging modalities as positive pairs of views for the same scene
- This enables self-supervised data fusion and yields strong performance on land-cover classification downstream tasks

images from the **SEN12MS** [2] and **DFC2020** [3] datasets for self-supervised pre-training and downstream classification tasks, respectively.

Evaluation on Downstream Tasks

Effect of Label Fraction

Single-label classification

Accuracy (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	OA
OnlySen-1	80 ± 15	57 ± 2	18 ± 17	0 ± 0	75 ± 10	67 ± 9	58 ± 2	97 ± 2	57 ± 3	62 ± 1
OnlySen-2	43 ± 26	78 ± 12	45 ± 29	11 ± 6	59 ± 9	62 ± 5	61 ± 18	96 ± 6	57 ± 6	62 ± 5
EarlyFusion	60 ± 12	66 ± 37	62 ± 8	1 ± 1	66 ± 10	73 ± 6	66 ± 18	99 ± 0	62 ± 4	66 ± 2
LateFusion	62 ± 23	76 ± 14	51 ± 18	1 ± 2	64 ± 11	71 ± 5	75 ± 9	100 ± 1	62 ± 4	65 ± 3
SimCLR (RGB)	11 ± 12	69 ± 13	45 ± 14	3 ± 3	$\overline{66\pm22}$	26 ± 23	77 ± 14	99 ± 1	49 ± 3	58 ± 4
D-SimCLR	78 ± 11	84 ± 6	62 ± 10	10 ± 6	63 ± 3	84 ± 4	82 ± 7	99 ± 0	$f 70\pm 2$	${f 70\pm 1}$
MMA	68 ± 17	89 ± 5	53 ± 13	8 ± 9	71 ± 7	80 ± 6	81 ± 7	100 ± 0	69 ± 2	69 ± 1

Multi-label classification

F1 Score (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	O-F1		4						LateFus	sion
OnlySen-1 OnlySen-2 EarlyFusion LateFusion	$69 \pm 2 \\ 37 \pm 20 \\ 48 \pm 10 \\ 56 \pm 6$	$46 \pm 6 \\ 51 \pm 14 \\ 53 \pm 7 \\ 45 \pm 11$	$\begin{array}{c} 29\pm 5 \\ 43\pm 20 \\ 45\pm 13 \\ 33\pm 9 \end{array}$	$8 \pm 8 \\ 23 \pm 18 \\ 13 \pm 11 \\ 18 \pm 24$	$\begin{array}{c} 68 \pm 7 \\ 76 \pm 2 \\ 69 \pm 5 \\ 64 \pm 3 \end{array}$	$egin{array}{c} 81\pm 3 \ 79\pm 6 \ 84\pm 4 \ 69\pm 16 \end{array}$	$\begin{array}{c} 60\pm8\\ 63\pm10\\ 71\pm4\\ 53\pm15 \end{array}$	$96 \pm 1 \\ 94 \pm 2 \\ 94 \pm 1 \\ 96 \pm 1$	$57 \pm 2 \\ 58 \pm 3 \\ 60 \pm 3 \\ 54 \pm 7$	$\begin{array}{c} 62\pm2\\ 63\pm2\\ 62\pm3\\ 61\pm5\end{array}$		35 -	1	10	 ا د ا	50 bol frad) stion (%		100
SimCLR (RGB) D-SimCLR MMA	3 ± 4 62 ± 2 58 ± 5	49 ± 11 61 ± 3 57 ± 5	$egin{array}{c} -24 \pm 16 \ 53 \pm 7 \ 35 \pm 8 \end{array}$	$ \begin{array}{r} - & - & - & - & - & - & - & - &$	$\begin{array}{c} -63 \pm 24 \\ 72 \pm 3 \\ 77 \pm 3 \end{array}$	40 ± 36 87 ± 0 89 ± 1		73 ± 6 96 ± 1 97 ± 0	39 ± 10 67 ± 1 62 ± 2	49 ± 6 69 ± 1 66 ± 1				Outpe with 1	erform 0% of	is supe	rvised t d obser	raining vations	
Summary					References														
	Sum	mary										Refer	ence	es					

