
• Unlabeled observations are abundant in the remote sensing domain
• Labeling this data is difficult, slow and expensive
• Realistically, it is not possible to label all data that satellites acquire
• This makes self-supervised learning a promising approach to leverage vast
amounts of unlabeled data in the remote sensing domain
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Overview
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• Self-supervised Sentinel-1/2 data fusion
• Strong performance on land-cover
classification downstream tasks

• Outperforms supervised training with 10%
of labeled samples

ReferencesSummary

Sentinel-2 is a multi-spectral ESA Earth
observation mission. The Sentinel-2
satellites provide imagery with up to 10m
resolution.
Sentinel-1 actively senses the Earth
with synthetic aperture radar (SAR) at
approximately 10m resolution.

We obtain co-located Sentinel-1/2
images from the SEN12MS [2] and
DFC2020 [3] datasets for self-
supervised pre-training and downstream
classification tasks, respectively.

Evaluation on Downstream Tasks Effect of Label Fraction
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Idea

• We adapt the SimCLR [1] contrastive self-supervised learning approach to
co-located Sentinel-1 and Sentinel-2 imagery

• Instead of randomly augmenting data samples, our technique treats the
different imaging modalities as positive pairs of views for the same scene

• This enables self-supervised data fusion and yields strong performance on
land-cover classification downstream tasks

Motivation

Outperforms supervised training
with 10% of labeled observations


